Trabodenoson: A Highly Selective Adenosine Mimetic Targeting the A1 Subreceptor

Cadmus C Rich, MD, MBA, CPE
VP, Medical Affairs & Clinical Development

July 27, 2016
Forward Looking Statements

This presentation contains forward-looking statements that are based on our management’s belief and assumptions and on information currently available to our management. Although we believe that the expectations reflected in these forward-looking statements are reasonable, these statements relate to future events or our future financial performance, and involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to be materially different from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements.

In some cases, you can identify forward-looking statements by terminology such as “may,” “might,” “could,” “would,” “will,” “should,” “expect,” “intend,” “plan,” “anticipate,” “believe,” “estimate,” “predict,” “project,” “target,” “potential,” “continue” or the negative of these terms or other comparable terminology. These statements are only predictions. You should not place undue reliance on forward-looking statements because they involve known and unknown risks, uncertainties and other factors, which are, in some cases, beyond our control and which could materially affect results. If one or more of these risks or uncertainties occur, or if our underlying assumptions prove to be incorrect, actual events or results may vary significantly from those implied or projected by the forward-looking statements. No forward-looking statement is a guarantee of future performance.

The forward-looking statements in this presentation represent our views as of the date of this presentation. We anticipate that subsequent events and developments will cause our views to change. However, while we may elect to update these forward-looking statements at some point in the future, we have no current intention of doing so except to the extent required by applicable law. You should therefore not rely on these forward-looking statements as representing our views as of any date subsequent to the date of this presentation.

All trademarks and registered trademarks are the property of their respective owners.

Trabodenoson is an investigational compound and is not yet approved by the FDA for any indication.
Inotek is an Emerging Innovator in Ophthalmology

- Clinical stage pharmaceutical company working in glaucoma and neuroprotection
- Initial Public Offering in 2015
- Regulatory strategy for lead asset confirmed by FDA (EOP2 Meeting June 2015)
- Trabodenoson monotherapy program in Phase 3, FDC program in Phase 2
- For more information – www.inotekpharma.com
Inotek is Taking a Broad Approach to Treating OHT and Glaucoma

Pathophysiology: Loss of ocular pressure regulation by the Trabecular Meshwork

Pathology: Optic Neuropathy disrupts the visual signal to the brain

Front of the Eye: IOP

Back of the Eye: Neuroprotection

Present in ocular hypertension

Cause of visual loss in all types of glaucoma

Trabodenoson has the Potential to Treat Glaucoma in Two Potentially Synergistic Ways
Adenosine is a naturally occurring purine nucleoside composed of an adenine molecule (green) attached to a ribose sugar molecule (blue).

- Adenosine and its receptors are present in the eye\(^1,2\)
- Adenosine levels ↑ in ocular hypertension\(^3\)
- Four adenosine subreceptors – A\(_1\), A\(_{2a}\), A\(_{2b}\), A\(_3\)
- Receptor modulation can cause different effects\(^4,5\)
- Adenosine A\(_1\) receptor (A\(_1\)R) in key target tissues\(^1,2\)
 - trabecular meshwork
 - ciliary body
 - retina

Adenosine A_1R Activation Decreases IOP

Adenosine mimetics that target the A_1R lower IOP$^{1-6}$

Novel mechanism of action of selective A_1R agonists6,7
- TM remodeling leads to improved outflow facility and IOP reduction3,7
- Transient decrease in aqueous production acutely lowers IOP7

Natural IOP Regulation and MMP-2

- Trabodenoson increases MMP-2 levels
- Increased IOP and/or stretch receptors lead to ↑ MMP-2
- ↑ MMP-2 increases turnover of the extracellular matrix
- Re-modeled ECM increases outflow facility and decreases IOP

Craig Crosson, MUSC, presented at AGS, 2016

Bradley JM IOVS 2001 Vol 42(7):1505-1513
Trabodenoson Increases Outflow Facility at the TM

- Increased outflow facility induced by trabodenoson (INO-8875) in porcine anterior segments
- Increased outflow facility is reversed by MMP inhibitor (GM6001) implicating MMP release in the outflow facility change and change in aqueous outflow

(Design: Individual outflow facilities were normalized to baseline levels (t = 0) and calculated as the percentage change from baseline. Data are presented as mean ± SE)

* In porcine anterior segment model
Trabodenoson is an adenosine mimic optimized to selectively target the A_1 receptor.

<table>
<thead>
<tr>
<th>Compound</th>
<th>A_1 (Ki, nM)</th>
<th>A_{2a} (Ki, nM)</th>
<th>A_3 (Ki, nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trabodenoson</td>
<td>0.97</td>
<td>4,690</td>
<td>704</td>
</tr>
<tr>
<td>Adenosine</td>
<td>100</td>
<td>310</td>
<td>290</td>
</tr>
</tbody>
</table>

Developed by medicinal chemists at Inotek.
Trabecular Meshwork: The Site of Trabodenoson’s Effect to Increase Outflow Facility

The trabecular meshwork function declines with age. With OHT/POAG, outflow facility is more markedly affected, resulting in elevated IOP and higher variation in IOP.¹

Trabodenoson works to remodel the TM through MMP2 to increase outflow facility.

This augments the natural ocular biology to restore IOP regulation, resulting in lower IOP and potentially less variation.¹

Aqueous humor is produced in the ciliary epithelium, flows into the anterior chamber and drains out via trabecular meshwork (green arrows).

The trabecular meshwork is the natural, pressure-regulating drain, controlling 70% of aqueous humor outflow to maintain ideal pressure.

Increasing aqueous outflow through the trabecular meshwork helps ensure support of the TM which is an avascular structure.

⁻⁷⁰% of outflow through the conventional pathway
⁻³⁰% of outflow through the uveoscleral pathway

¹Brubaker 2003
Trabodenoson and Ocular Tissue Distribution

<table>
<thead>
<tr>
<th>Ocular Structure</th>
<th>Trabodenoson (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 hrs</td>
</tr>
<tr>
<td>Aqueous Humor</td>
<td>59.6</td>
</tr>
<tr>
<td>Ciliary Body</td>
<td>101.8</td>
</tr>
<tr>
<td>Trabecular Meshwork</td>
<td>893.1</td>
</tr>
<tr>
<td>Cornea</td>
<td>438.1</td>
</tr>
<tr>
<td>Sclera</td>
<td>130.26</td>
</tr>
<tr>
<td>Iris</td>
<td>1289</td>
</tr>
<tr>
<td>Lens</td>
<td>BLQ</td>
</tr>
<tr>
<td>Retrobulbar Fat</td>
<td>215.86</td>
</tr>
<tr>
<td>Choroid</td>
<td>148.8</td>
</tr>
<tr>
<td>Conjunctiva</td>
<td>919.4</td>
</tr>
<tr>
<td>Vitreous Humor</td>
<td>BLQ</td>
</tr>
<tr>
<td>Retina</td>
<td>19.1</td>
</tr>
</tbody>
</table>

- 200 mcg of trabodenoson in cynomolgus monkeys
- CNM eye are the closest model to human eyes
- Drug is broadly distributed throughout the eye, without accumulation
- A_1 receptors are present in the target tissues
- Tissue concentrations exceed K_i in the trabecular meshwork, ciliary body and retina
- Trabodenoson $K_i = 0.97\text{nM}$ for A_1 receptor
- No accumulation of drug at the lens

BLQ – Below the limit of quantification
Phase 2: IOP Reduction for 500mcg BID Dose
Statistically significant at all time points on Day 28

Myers et al., 2016, JOPT, e-pub ahead of print doi:10.1089/jop.2015.0148; IPC-01-2013:
ClinicalTrials.gov Identifier: NCT01917383

IOP similar at 8am on Days 28 and 29

* p-value < 0.05 compared to placebo group
Note: Day 28 p-values significant following Bonferroni correction
Dose-Dependent Diurnal IOP Reduction

Myers et al., 2016, JOPT, e-pub ahead of print doi:10.1089/jop.2015.0148
Phase 1: Good Safety Profile and Tolerable

Design

Results – No Dose Limiting Toxicity; no dose-related ocular or systemic side effects; limited systemic exposure at high doses

Journal of Ocular Pharmacology and Therapeutics. April 2016, ahead of print. doi: 10.1089/jop.2015.0147. Trial authors; Alan Laties¹, Cadmus C. Rich², Randall Stoltz³, Vernon Humbert⁴, Chaim Brickman², William McVicar², and Rudolf A. Baumgartner²
TRAE Summary for Trabodenoson Program

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Ph 1 Single Drop</th>
<th>Ph 1 Safety</th>
<th>Ph2 Dose Range</th>
<th>Phase 2 Additivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Placebo</td>
<td>Overall Active</td>
<td>Placebo</td>
<td>Overall Active</td>
</tr>
<tr>
<td></td>
<td>(n=28)</td>
<td>(n=56)</td>
<td>(n=28)</td>
<td>(n=42)</td>
</tr>
<tr>
<td>Eye disorders</td>
<td></td>
<td></td>
<td>(n=59)</td>
<td>(n=85)</td>
</tr>
<tr>
<td>Conjunctival hyperemia</td>
<td>0</td>
<td>3 (5.4)</td>
<td>0</td>
<td>12 (14.1)</td>
</tr>
<tr>
<td>Ocular hyperemia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eye irritation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Foreign body sensation in eyes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eye pain</td>
<td>0</td>
<td>0</td>
<td>4 (9.5)</td>
<td>0</td>
</tr>
<tr>
<td>Punctate keratitis</td>
<td>5 (17.9)</td>
<td>4 (7.1)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Headache</td>
<td>0</td>
<td>0</td>
<td>8 (19.0)</td>
<td>0</td>
</tr>
<tr>
<td>Vital Dye Staining</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Ph 1 Single drop, Ph2 Dose Range and Ph2 Additivity were performed in patients with OH or POAG. Ph1 Safety was performed in healthy adult volunteers.
2. LP = latanoprost; QAM = each morning; QPM = each evening; TVC = trabodenoson-matched placebo control

*Items with less than 2 events removed – Refractive disorder (1), Lid crusting (1), Conjunctival hemorrhage (1)

Where ≥ 2 Events were Reported in Any Given Study
Phase 2 Dose Ranging Trial: Hyperemia Incidence

Hyperemia was infrequent and unchanged by trabodenoson

Note: Percentage is representative of: (number of observed events/number of measurements), and all recorded data are reported here.

Myers et al., 2016, JOPT, e-pub ahead of print doi:10.1089/jop.2015.0148
Phase 2 Dose Ranging Trial: Hyperemia Score Graded (0-3)

Hyperemia scores were low and unchanged by trabodenoson

0 = none/trace
1 = mild
2 = moderate
3 = severe

Myers et al., 2016, JOPT, e-pub ahead of print doi:10.1089/jop.2015.0148
Phase 2 Study Program Conclusions

<table>
<thead>
<tr>
<th>Conclusion</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose-dependent IOP-lowering observed up to 500 mcg BID</td>
<td></td>
</tr>
<tr>
<td>IOP drop from diurnal baseline of 3.5 - 5 mmHg (median 4.1 mmHg)</td>
<td></td>
</tr>
<tr>
<td>IOP-lowering efficacy improved with increasing time on therapy (to day 28)</td>
<td></td>
</tr>
<tr>
<td>IOP reduction persisted 24 hours post last dose</td>
<td></td>
</tr>
<tr>
<td>QD dosing potential should be investigated in Phase III clinical trials</td>
<td></td>
</tr>
<tr>
<td>Well-tolerated with no dose limiting tolerability</td>
<td></td>
</tr>
<tr>
<td>MOA is not associated with hyperemia (results through Phase 2 support this)</td>
<td></td>
</tr>
<tr>
<td>No treatment-related drop outs in any completed study to date</td>
<td></td>
</tr>
</tbody>
</table>
Identical population to Phase 2

- IOP >24 mmHg
- ~ 360 patients treated for 12 weeks

Three trabodenoson doses:
- 3.0% OU QD* (1000 mcg)
- 4.5% OU BID (1500 mcg)
- 6.0% OU QD* (2000 mcg)

Placebo controlled
- Statistical comparator

Timolol 0.5% OU BID
- Internal control
- Not part of statistical comparison

* Drops are administered BID, one active trabodenoson QAM and placebo QPM to maintain masking
Phase 3 Monotherapy Development Program

<table>
<thead>
<tr>
<th>Studies</th>
<th>MATrX-1</th>
<th>MATrX-2</th>
<th>MATrX-3 - LTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Adult with OHT or POAG; off all meds; baseline IOP ≥ 24mm Hg</td>
<td>Same as MATrX-1</td>
<td>Same as MATrX-1, without IOP lower limit</td>
</tr>
<tr>
<td>Doses</td>
<td>1000mcg (3.0%); 2000mcg (6.0%) QD; 1500mcg (4.5%) BID delivered to both eyes</td>
<td>Selected from MATrX-1</td>
<td>Selected from MATrX-1</td>
</tr>
<tr>
<td>Treatment Duration</td>
<td>12 weeks</td>
<td>Same as MATrX-1</td>
<td>Up to 12 months</td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td>Superiority vs. placebo 4 time points during day Weeks 4, 6, 12</td>
<td>Same as MATrX-1</td>
<td>Safety</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 300 subjects at 6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 100 subjects at 12 months</td>
</tr>
<tr>
<td>Internal Control</td>
<td>Timolol</td>
<td>Same as MATrX-1</td>
<td>Same as MATrX-1</td>
</tr>
</tbody>
</table>
Adenosine, A₁R and Cytoprotection

- Adenosine A₁ receptor activation is neuroprotective in the retina and brain.¹-³
 - Decreased excitotoxicity – glutamate release and regulation of intracellular calcium²-⁴
 - Ischemic preconditioning (ischemia reperfusion) and increased survival with oxidative stress⁵-⁹
 - Modulation of cellular metabolism may reduce energy needs¹⁴, ⁹-¹⁰
 - Adenosine acts in an autocrine and paracrine manner via the A₁R so effects are transferable surrounding cells¹¹

- Trabodenoson, as a highly selective A₁R agonist, may reduce excitotoxicity, induce ischemic preconditioning and modulate metabolism and contribute to increased neuronal survival

Inotek/Trabodenoson Summary

MOA/Target
- New target and new sites in the eye (TM, Ciliary Body and Retina)
- Highly selective adenosine mimetic targeting the A_1 receptor
- Improved outflow facility lowers and stabilizes IOP

Pre-Clinical and Clinical Data
- Efficacy – increasing with dose/time (higher doses in Phase 3)
- Safety – Good ocular tolerability, no systemic effects in Phase 1 + 2
- Cytoprotective potential – preclinical data and adenosine biology

Ongoing Development
- Monotherapy, adjunctive therapy and fixed dose combination
- Trabodenoson may give doctors another option in OHT and POAG
- Neuroprotection in preclinical development
- Monotherapy NDA planned 2018
Trabodenoson: A Highly Selective Adenosine Mimetic Targeting the A1 Subreceptor

Cadmus C Rich, MD, MBA, CPE
VP, Medical Affairs & Clinical Development

July 27, 2016